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Linear stability analysis of convective chemical fronts
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A chemical front propagating upward in a fluid separates heavy unreacted fluid from light reacted fluid. The
density difference caused by the front propagation leads to convection. Convection enhances the front speed
and curves the front as it propagates upward in a tube. The convective front propagates with constant speed and
is steady in a frame of reference comoving with the front. This paper presents a linear stability analysis of the
convective front. The fronts are modeled using a front evolution equation coupled to Darcy’s law for flow in
porous media and the Navier-Stokes for viscous flow. The solutions can be either axisymmetric or nonaxi-
symmetric as observed in experiments in tubes. For flow in porous media, there is a region of bistability
between both types, whereas in viscous flow the axisymmetric front is always unstable.
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[. INTRODUCTION tions are computationally more expensive, but they showed
the transition from flat, to nonaxisymmetric, and later to axi-

Chemical waves generate thermal and compositional gra&symmetric fronts as the width of the tube is increagkt].
dients that lead to convection. Recent experimental and thefhe solutions of the front evolution equations showed only
oretical work have shown that convection significantly altershonaxisymmetric fronts.
the behavior of the chemical wave. Miike, Muller, and Hess ~ Theoretical work for flow in porous media are relevant to
showed that convective rolls are associated with the chemf@Xperiments where the reaction takes place between two ver-
cal waves in the Belousov-Zhabotinskgz) reaction[1]. tical v_vaIIs, a Hele-Shaw cell12]. The react|on.—d|ffu5|o'n
Menzingeret al. observed convective turbulence as the Bz&duation coupled to Darcy's law showed a region of bista-
reaction takes place in a vertical tuf. Chemical waves Dility where the front can be either axisymmetric or nonaxi-
propagating upward are different than propagating downSymmetric[13]. This property was not observed for the vis-
ward due to convection in the irofil)-nitric acid reaction Ccous fluid equations described by the Navier-Stokes
[3], the chlorite-thiosulfate reactiofd], and the iodate- €quations. In this yvork, we carry out the Imearl stability
arsenous acid reaction in vertical cylind§8. Experiments a}naly5|s of convective frqnts using the front.evolutlon equa-
by Masereet al. in the iodate-arsenous acid reaction showedion. We considered flow in porous media using Darcy’s law,
that a front propagating upward in a vertical cylinder can bednd viscous flow using the Navier-Stokes equations.
either flat, nonaxisymmetric, or axisymmetric depending on
the diame_zter of t_he tub[q‘s]. For d_iameters less than 1.1 mm, Il. EQUATIONS OF MOTION
the front is flat; if the diameter is between 1.1 and 2.3 mm,
the front is nonaxisymmetric; and for larger diameters the Chemical waves in the iodate-arsenous reaction are de-
front is axisymmetric. Fronts propagating downward are al-scribed with a reaction-diffusion equation coupled to nonlin-
ways flat with the same speed. They have the same speed @fr hydrodynamics. Numerical solutions on a two-
the flat front propagating upward, indicating no convection,dimensional grid showed transitions from flat, to
thus the curvature of the front and speed enhancement is di@naxisymmetric, and later to axisymmetric froftsl]. In
to convective fluid motion. In this reaction, a single front the present work, the chemical front is described with an
propagating upward separates heavy unreacted fluid frorikonal relation that gives the normal velocity of the reaction
light reacted fluid. This density difference leads to convec{ront (c) as a function of the local curvaturj:
tion.

Previous theoretical work consisted of the linear stability
analysis of the convectionless flat fronts in the iodate-
arsenous reactiofi7]. This calculation showed that the flat
front is unstable to nonaxisymmetric perturbations near thétereco is the flat front speed). is the molecular diffusiv-
onset of convection, and unstable to axisymmetric perturbaity, V is the fluid velocity, and is the normal unit vector to
tions for larger diameteri$8]. However, this calculation can- the front. The eikonal relation was first introduced by Zykov
not predict when the transition from a nonaxisymmetric to ar{14], and later used by Keener and Tyson in the context of
axisymmetric front takes place. In order to describe this prothe Belousov-Zhabotinsky reactidd5]. The relation was
cess, a linear stability analysis of the convective fronts isnathematically derived from a set of reaction-diffusion
required. Theoretical work on convective fronts in theequations using singular perturbation theftg]. This rela-
iodate-arsenous acid reaction consisted of numerical soluion was verified in experiments by Foerster, Muller, and
tions of the equations of motion in two dimensions. The frontHess[17]. Wilder, Vasquez, and Edwards showed that this
was modeled with reaction-diffusion equatidi®§ and with model can be applied to chemical waves involving fluid flow
a front evolution equatiohl10]. The reaction-diffusion solu- [18].

c=co+DK+V-n. (1)
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The front can be described by the front heightH(x,t), dy] — oH
wherex is the horizontal coordinate, arthe vertical coor- az| = R X’ (13)
dinate. We consider only the two-dimensional problem in the H
x-z plane. The curvature can be expressed as a function %th
H,
2 2 S k
B d°H/ dx R=—gAp. (12
[+ (GHIax) T @ m
) The brackets indicate the value of any function in the unre-
as well as the normal unit vector: acted side of the front, minus the value in the reacted side of
- - the front.
.~ [z=(dH/9x)x] 3 The equations of motion and the boundary conditions can

n= [1+((9H/(9x)7]137' be further simplified using a reference frame moving with
the speed of the flat front, and considering only small devia-
Herex andz are the unit vectors in the andz directions, tions from the flat front. In this reference frame E¢8)—
respectively. (11) still govern the behavior of the stream function; how-
For fluid in porous media or viscous fluid between two ever, the stream function relates to the increase of speed of

vertical slabs with a narrow gap, the flow can be describedhe fluid flow. The fluid velocity in the moving frame is

with Darcy’s law \70: —coz, SO Eq.(7) just gives the additional velocity to
this field. Thus the solution for a flat convectionless front is

V=— E(V”p+pg§)l (4) given byﬁH=9 andV=0, since the total fluid velocity is

1 equal toVy+ V. Equations(9)—(11) indicate that the stream

function depends linearly witidH/dx. Using this fact, and

expanding the normal vectar and the curvatur& up to

V.V=0. (5) :gﬁond order iH/Jx, we obtain a front propagation equa-

and the continuity equation

2

HereV is the fluid velocity,P is the pressureg is the ac- oH 9H
+Volg=t - (13

celeration of gravity in the verticat direction, k is the co-
efficient of permeability of the medium, andis the coeffi-
cient of viscosity. For viscous fluid in a Hele-Shaw cell, we
just have to replack with a?/12, wherea is the slab width.
The fluid density(p) is included only where it modifies the

b +co dH
gt axE 2\ ox

We can relate the jump conditions at the front to jump
conditions atz=0 using a Taylor expansion of the form

large gravity term. Using a step functidd which is zero if 0¢
the argument is negative and 1 if it is positive, we can write [£l,=u=[€],=0+H = +eee (14
the fluid density as Z]1-0
p=po+ApO(z—H). (6)  Here ¢ represents any variable that needs to be matched at

the front. The front heighitl is considered small. In the jump

The continuity equation allows us to replace the fluid veloc-conditions[Egs. (10) and (11)], the fluid variablesys and
ity with a stream function, where the components of the ve-d#/dz are already proportional tbl, therefore, the second

locity are given by term in the Taylor expansiohEqg. (12)] will be of order
o(H?). Since we just need to include linear terms lénin
d d the fluid velocityV, [Eqg. (11)], we can approximate
Vx:&_zzﬂ and sz_a_f_ @ yV: [Eq. (11)] pp
[]z-nw=[&]z-0- (15
With this substitution, Darcy’s law becomes . . .
Using similar arguments based on a Taylor expansion, we
kK dp can useV|,—g, in Eq. (13 instead ofV|,_ . Therefore the
Viy=——g—. (8)  jump conditions can be taken a¢0, as well as the vertical

component of the fluid velocity.

- P . The front evolution equations in a viscous fluid was de-
The derivative of the step function in the densgitieads toa . ; X . ;
b e rived in a previous work19]. The only difference is replac-

Dirac 6 function, which in turn determines jump conditions .

for the stream function across the front. The equation for thé9 D_arcy§ law (Eq. 4 W'th_ the _Imeanzed Navier-Stokes
stream function is then the Laplace equation equations in a frame comoving with the flat front. In terms of

the stream function,
VZy=0, ©) p

—V2y+vV2V2y=0 16

with jump conditions across the front: Co dz YrvVIVIY=0, (16

[¢]y=0, (100  together with the jump conditions
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[#10=0, 17) oH 5 9H L Co oH 2+ R s y
w T P2l T22 (ng)H, cogngx).
—| =o. (18 @7
0 We define dimensionless units:
92 '
IV o, (19 H=(D/co)H', 29)
Jz 0
x=x'DIR, (29
Y] gAp oH
—| = . (20 =
az° |, vpo IX g=q'R/D, (30
Here v is the kinematic viscosity, and is related to the coef- t=t'D/R?, (31)
ficient of viscosity byv= u/p. The boundary conditions for
Darcy’s law requires that the normal fluid velocity at the v’ =cR? (32)

walls vanish. For viscous fluids, we choose free slip bound-
aries, which also require vanishing normal velocity at theiy transform the equation into
walls. This will allow us to compare both models under the
same boundary conditions. JH'  92H' 1/9H'\?2 (nq’)
—=—a+=|—| +2, —H/ ng'x’).
at’ 5X,2 2 ( &X') ; 2 n COS( q )
Ill. SOLUTIONS FOR FLOW IN POROUS MEDIA (33
We solve the equations of motion for flow in porous me-
dia introducing a Fourier expansion on the stream functio
(¥ and the front heightH]):

From now on we will drop the primes. The reason for this
Thoice of units is clear, as we introduce the Fourier expan-
sion[Eg. (22)] to transform the partial differential equations
into a set of ordinary differential equatiof®DE’s) on the
(X,2,t) =2, n(z,1)sin(ngXx), (21)  Fourier coefficientsd,. The resulting set of ODE’s does not

n contain the termvy except on the projection ovéty:

— 2 % = q_z n2H?2 (34)
H(x,t)= 2 Hn(t)cognagx). (22 a4 =& n

The boundaries are two vertical walls locatedxatO and dH, 2 o, P q°

x=L. The numberg is determined by the wall separation gt | TPt Het n§=:l mE:l nmMb,Hm

g= w/L. With these substitutions Eq&9)—(11) are decou-

pled into equations for the Fourier coefficients: X(Op,n—m~ Op,n+m) for p=1. (35
d2y, This means that the behavior of the dynamical system is
F—(nq)zdxnzo, (23)  determined solely by the coefficients,, with n>0, with

their behavior independent from the dimensionless flat front

speed. They will be determined only by the dimensionless
[#n]o=0, (24 parameteq which is related to the width of the tube. We can

obtain valuable insight in the stability of the fronts just by

d - . . . _
n — “R(nqH, . 25 Igeepmg a few terms in the truncations. A two term trunca:
dz |, tion
This set of equations with the jump conditions can be solved dHo =g?H?/4, (36)
as functions oH,: dt
B dH, 1
RAngnaa it z<0 ot =~ OH+SaH 37
n(2)=1 < 26 . :
RH is useful to analyze the stability of the flat front. The first

"o .
e (a2 if z=0. equation determines the behaviortéf. The second equa-

tion is a linear equation involving onli#;. To analyze the
Using this result together with the relation between theStability of the flat front solutionH,=0 andH,=0) itis
vertical component of the velocity and the stream function€cessary to analyze the stability of the second equation in-
we can write the front evolution equation using only thevolving only H,. The solution is stable only >3, which
front heightH and its Fourier coefficients: is the result of a previous linear stablity analyg29]. For



6770 DESIDERIO A. VASQUEZ 56

8.00 16.0
~—) b
£ £
s 4.00| ‘é 6.5 |
(-]

} ¥

= =

N L 3.0 '

2'%.00 8.00 16.0 0.00 8.00 16.0

horizontal (x) coordinate horizontal (x) coordinate

FIG. 1. Time sequence showing the development of the convec- FIG. 2. Time sequence showing the development of the convec-
tive front from a perturbed flat front in porous media. We show thetive front from a perturbed flat front in porous media. We show the
front every 30 dimensionless time units. In this case, an axisymmetront every 30 dimensionless time units. In this case, a nonaxisym-
ric front develops. The spatial units are the dimensionless spatianetric front develops. The spatial units are the dimensionless spa-
units defined in the text. The reference frame is moving with the flatial units defined in the text. The reference frame is moving with the
front speed. flat front speed.

unstable solutions, the coefficieht; grows exponentially, with small random perturbations. The flat front evolves into
forcing Hy to grow because of their coupling through the either front depending on the initial conditions. In Fig. 1, we
first equation. In this case there is no stable curved front. Ashow the evolution of a flat front with small random pertur-
three term truncation bations leading to an axisymmetric front. The height of the
front is measured in a reference frame comoving with the
speed of the convectionless flat fromff. In other words, a
horizontal line aH =0 represents the moving flat front. The
curved front moves with a speed faster than the flat front
dH; speed, increasing steadily its average height. In Fig. 2 we
T —%H;+g?HH,+ 2 qHy, (39 show the results obtained with different random initial per-
turbations. In this case a nonaxisymmetric front evolves from
the initial front. We observe that the speed of the nonaxisym-
2: —4qPH,— 1 2H§+qH2 (40) metric frqnt is high_er by compar_ing the p(_)sitions of the axi-
dt symmetric front with the nonaxisymmetric front at exactly

the same times after initiation. Both fronts are stable for the
provides the nonlinear mechanism that stabilizes the convegame parametey, which indicates that bistability exists.

tive front. In this system, the behavior f; is determined Convection causes the different shapes of the front. For a
by the coefficientdH; andH,. The other equations do not nonaxisymmetric front, one convective roll is present as
involve Hy. The flat front solution (Ho=vet with  shown in Fig. 3. In this case, fluid rises close to one vertical
H,=H,=0) is also stable fog>3 which is determined by wall, falling close to the opposite wall, causing the charac-
the second and third equations. A steady state solution faeristic nonaxisymmetric shape. In the case of an axisymmet-
the last two equations can be found with=(29—1)/2q ric front (Fig. 4), we find that the fluid rises in the middle and
and H2=2(—-2q+1)(49—1)/q?, these formulas require falls near the walls. The front is completely symmetric for a
thatq< 3 for the solution to exist. Linearizing the equations reflection around a vertical line through the middle of the
shows that the solution is stable fqe>2. In summary, the (UP€. This is shown in the steady state solution of E&S)
three-term truncation shows a transition from a stable fIaWhere only the Fourier co_ef_f|C|ents fc_)r even symmery are
1 , 1 present, namely, the coefficienits,, with n even. For the
front (q>3), to a stable convective frong(q<3), to an nonaxisymmetric front, both even and odd terms are present.
unstable convective fronig 3). Consequently, the front is not antisymmetric.
With 25 terms in the truncation we obtain axisymmetric  We carry out the linear stability analysis of the convective
fronts as well as nonaxisymmetric fronts. A direct numericalfront to understand the bistability observed in the numerical
simulation withq= 0.2 generates both types of fronts startingsolutions. First, we obtain the numerical solution of each

dHo
¢ = WPHI/A+?H, (38)
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FIG. 3. Velocity field near a nonaxisymmetric front in porous  FIG. 4. Velocity field near an axisymmetric front in porous me-
media. The front curvature is caused by fluid rising near one walldia. The front curvature is caused by fluid rising in the middle and
and falling near the opposing wall. The units are the dimensionles&lling near the walls. The units are the dimensionless units de-
units described in the text. The reference frame is moving with thescribed in the text. The reference frame is moving with the flat front
flat front speed. speed.

front using Newton's method for the system of nonlinearn Fig: 6 where we plot the real part of the eigenvalue with a
equations[21]. These steady state solutions correspond tghaximum real part, as a function of the paramejerror
setting the time derivatives to zero in Eq85). We use an 0.17<g<0.5 the nonaxisymmetric _s_olutlon is stable as the
axisymmetric solution to start Newton’s method, with the €@l part of the eigenvalue is positive. For 0:23<0.25
value ofq slightly changed. In this way we obtain a branch there is an unstable axisymmetric squpon, whileder0.25
of axisymmetric solutions ag varies(Fig. 5. We tested the W€ found a stable axisymmetric solution.
result comparing the solution of Newton’s method with the
solution of the direct numerical simulation of the ODE's.
The results are the same. We proceed in the same manner to The equations of motion coupled to the jump conditions
generate the nonaxisymmetric branch. The calculated axfor viscous flow lead to the front evolution equation coupled
symmetric branch runs fromq=0.12 to 0.23. No solution
was found for values abovg=0.23. While solutions for
values withq<0.1 are possible in both branches, we chose
not to study them beyond this point. Small valuegdead
to fronts with very high curvature. The front evolution model
is an approximation of the eikonal relation for a small cur-
vature. In this regime, the full eikonal relation may be
needed, as well as the inclusion of more terms in the trunca- =
tion for accurate solutions. The nonaxisymmetric branch was §0.30 =
calculated frong= 0.5 (where the transition from flat to con- wn
vective front takes plageto q=0.12. The speeds of both !
types of fronts always increase gsdecreases. This means
that as the tube is widened the front moves faster. However,
the speed of the axisymmetric front can be lower than the
speed of the nonaxisymmetric front for a small range of val-
ues ofg in the regime where both types are stable. 0.00 ,
The linear stability analysis is carried out linearizing the 0.00 0.30 0.60
equations around these solutions. We use the routines in the q
EISPACK diagonalization package to calculate the corre- g 5. The front speed as a function of the numbera/L in
sponding eigenvalug2]. The real part of the eigenvalues 5 porous media. The solid line corresponds to stable fronts, and the
determines the stability of the front, consequently we need tQpotted line to unstable fronts. The bold line is for axisymmetric
study only the eigenvalue with a maximum real part. If thefronts, and the thin line is for nonaxisymmetric fronts. There is a
maximum real part of the eigenvalue is positive the front ischange of stabilities in each branch. The speed is measured relative
unstable, if it is negative it implies that all the real parts areto the flat front speed. The units are the dimensionless units de-
negative, thus the front is stable. The results are summarizestribed in the text.

IV. SOLUTIONS FOR VISCOUS FLOW

0.60

1
1
1
1
1
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FIG. 6. Maximum real part for the eigenvalues of the linearized FIG. 7. The front speed as a function of the numgyerz/L in
matrix around the convective front solutions in porous media. Thea viscous fluid. The thin line corresponds to an unstable axisym-
thin line corresponds to the nonaxisymmetric solution. It is negativemetric front, while the bold line corresponds to a stable nonaxisym-
for 0.17<q<0.5, indicating a stable front. The bold line corre- metric front. The speed is measured relative to the flat front speed.

sponds to the axisymmetric solution. It is negative der0.23. The units are the dimensionless units described in the text.
to the front Fourier coefficientsl, : dHp 2421 1 Ho q° 2 2 HH
ne — = - -— — nm
dt P 4pg) P 4 =i nmem
dH D(gZH Co (IH\? Ry 5 H, (s 5 | for pel 8
—=D—mt || Tt 7 & 5,codnagx “m— or p=1,
at x> 2\ ox 4 < nqcos{ g%, (pJn-m|~ Op,n+m p

(41)  with the equation foH identical to its corresponding equa-
tion for a porous medigEq. (31)].
with We look for the steady state solutions using the tech-
niques previously described. The results are shown in Fig. 7,
gAp where we display the speed of the axisymmetric and nonaxi-
- vpo (42 symmetric branches as functions of the parameteiThe
calculations used a 125-term truncation required to assure
The derivation of this equation is similar to the derivation of convergence. We find two types of steady state solutions.
Egs.(33), and can be found in the literatuf9]. This equa- he nonaxisymmetric solutions are possible wafk0.63,
tion is an approximation valid for the experimental param-the axisymmetric solutions are possible wik<0.32. The
eters of the iodate-arsenous acid reaction, where the speed#pnaxisymmetric state includes terms of even and odd parity
the front can be neglected for valuesgphear the onset of in_the Fourier expansion, while the axisymmetric state con-
convection[7]. We introduce the dimensionless units for vis- tains only even terms, as was the case for flow in porous

f

cous fluid: media. The calculation of the eigenvalu@&sg. 8 show that
the nonaxisymmetric steady state is always stable, while the
H=(D/co)H’, (43) ~ axisymmetric state is always unstable. There is no region of
bistability as it was the case of flow in porous media.
U3
X:Xr(E) (44) V. DISCUSSION AND CONCLUSIONS
R¢/

Newton’s method provided the convective steady state so-
R\ 13 lutions of the front evolution equations. A linear stability
f . . ™" .
q:q'(_) , (45) analysis determined the stability of these solutions. The cal-
D culation of the maximum real part of the eigenvalues indi-
cated a transition from flat fronts to nonaxisymmetric fronts,

., ©Co as well as the parameters where the axisymmetric fronts be-
t=t D2/3Rf173’ (46) come stable for fronts propagating in porous media or Hele-

Shaw cells. Moreover, a region of bistability between axi-
symmetric fronts and nonaxisymmetric fronts was observed.

2
Co . K - L .
vl= _ (47 This bistability was also observed in fronts modeled with a
0 D4/3Rf23 one-variable reaction-diffusion equation coupled to Darcy’s

law. Carey, Morris, and Kolodner carried out experiments in
With these units, the resulting set of ODE’s on the FourierHele-Shaw cells, where Darcy's law can be appljad].
coefficients is However, a direct comparison with our theory is not yet
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3.00 number €) for the onset of convection varies by a factor of
about 2 between the front evolution model and the reaction-
diffusion model[13], the front evolution model may only
have a qualitative comparison with the experiments. We
point out that both models have the same qualitative features,
namely, a nonaxisymmetric front near the onset of convec-
tion, and a region of bistability away from onset.

The linear stability analysis of the convective fronts in
0.00 viscous fluids establish that there are stable nonaxisymmetric
fronts near the onset of convection. However, it also estab-
lishes that there are no stable axisymmetric fronts. This is
contrary to what is observed in the experiments, where non-
axisymmetric fronts are observed near the onset of convec-
tion, and axisymmetric fronts are observed away from the
onset of convection. This result helps to explain a previous
30 , numerical simulation of the front evolution equation using

"0.00 0.35 0.70 the correct no-flow boundary conditions in a two-
dimensional slal§10]. This study found that the calculated

FIG. 8. Maximum real part for the eigenvalues of the Iinearizedfront speed was comparaple to the eXper.Imental frqnt spged
matrix around the convective front solutions in a viscous fluid. The"€&f the.onset of cor_lvectlon. .However, it did not .ﬁnd.aXI_
thin line corresponds to the nonaxisymmetric solutions. The boldSYymmetric f.ronts.. Axisymmetric fronts appeargd in d|rgct
line corresponds to the axisymmetric solutions. The axisymmetri@umerical simulations using the reaction-diffusion equation

solutions always have a positive real part, consequently they arl® describe the iodate-arsenous acid reaction frbhk This
indicates that the front evolution model is not reliable be-

yond the onset of convection. Nevertheless, both models

possible, since the experiments were carried out away frorfPughly agree for the critical wavelength for the onset of
the onset of convection. Using the linear stability analysisconvection. The qualitative and quantitative features of the
and the experimental values of the parameters, the onset &Pnt evolution equation with viscous fluids are valid only
convection for a wall separation of 0.05 cm has a critical slagear the onset of convection.

wich of 0.06 cm. The histable region shoulq lie close to ACKNOWLEDGMENTS

twice that length(0.12 cm). The actual experiments have

slab widths of 3.2 cm. This means that the experiments in This research was supported by a grant from Research
Hele-Shaw cells were performed not only above onset, bu€orporation. Helpful discussions with Joseph Wilder are also
also well above the region of bistability. New experimentsacknowledged. | acknowledge the Pontificia Universidad
will have to be designed to test the onset of convection anatolica del Peru for their generous allotment of time during
the predicted bistability. However, since the critical wavethe writing of the manuscript.

Real(eigenvalue)

unstable.

[1] H. Miike, S. C. Muller, and B. Hess, Phys. Lett. M1, 25 [12] M. R. Carey, S. W. Morris, and P. Kolodner, Phys. Re\bE

(1989. 6012(1996.
[2] M. Menzinger, A. Tzalmona, R. L. Armstrong, A. Cross, and [13] D. A. Vasquez, J. W. Wilder, and B. F. Edwards, J. Phys.
C. Lemaire, J. Phys. Cherfi6, 4725(1992. Chem.104, 926 (1996.
[3] I. Nagypal, G. Bazsa, and I. R. Epstein, J. Am. Chem. Soc{14] B. S. Zykov, Biophysic®5, 329 (1980.
108, 3635(1986. [15] J. P. Keener and J. J. Tyson, Physic2D 307 (1986.
[4] G. Bazsa and I. R. Epstein, J. Phys. Ch&8).3050(1985; J.  [16] J. J. Tyson and J. P. Keener, Physic8D 327 (1988.
A. Pojman and |. R. Epsteiribid. 95, 1306(199]). [17] P. Foerster, S. C. Muller, and B. Hess, Scier, 685

[5] T. McManus, Ph.D. thesis, West Virginia University, 1989; J. (1988.
A. Pojman, I. R. Epstein, T. J. McManus, and K. Showalter, J'[18] J. W. Wilder, D. A. Vasquez, and B. F. Edwards, Phys. Rev. E
Phys. Chem95, 1299(199J). 47, 3761(1993

[6] J. Masere, D. A. Vasquez, B. F. Edwards, J. W. Wilder, and K'[19] J. W. Wilder, D. A. Vasquez, B. F. Edwards, and G. I. Sivash-
Showater, J. Phys. Cher@8, 6505(1994) insky, Physica D73, 217 (1994

[7] B. F. Edwards, J. W. Wilder, and K. Showalter, Phys. Rev. A[ZO] ] Hu,ang D. A Vyasquez B .F Edwards. and P. Kolodner

43, 749 (199)). h
[8] D. A. Vasquez, J. W. Wilder, and B. F. Edwards, Phys. Fluids Phys. Rev. E48, 4378(1993. )
[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

A 4, 2410(1992. . ) . )

[9] D. A. Vasquez, J. M. Littley, J. W. Wilder, and B. F. Edwards, Flannery,Numerical Recipes in Fortrgrend ed.(Cambridge
Phys. Rev. B50, 280 (1994. University Press, Cambridge, 1992

[10] J. W. Wilder, D. A. Vasquez, and B. F. Edwards, Physica D[22] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y.
90, 170(1996. Ikebe, V. C. Klema, and C. B. MolerMatrix Eigensystem

[11] Y. Wu, D. A. Vasquez, J. W. Wilder, and B. F. Edwards, Phys. Routines-eispack Guide 2nd ed. (Springer-Verlag, Berlin,
Rev. E52, 6175(1995. 1976.



