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Linear stability analysis of convective chemical fronts
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A chemical front propagating upward in a fluid separates heavy unreacted fluid from light reacted fluid. The
density difference caused by the front propagation leads to convection. Convection enhances the front speed
and curves the front as it propagates upward in a tube. The convective front propagates with constant speed and
is steady in a frame of reference comoving with the front. This paper presents a linear stability analysis of the
convective front. The fronts are modeled using a front evolution equation coupled to Darcy’s law for flow in
porous media and the Navier-Stokes for viscous flow. The solutions can be either axisymmetric or nonaxi-
symmetric as observed in experiments in tubes. For flow in porous media, there is a region of bistability
between both types, whereas in viscous flow the axisymmetric front is always unstable.
@S1063-651X~97!07412-6#

PACS number~s!: 47.20.Bp, 47.54.1r, 47.70.Fw, 03.40.Gc
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I. INTRODUCTION

Chemical waves generate thermal and compositional
dients that lead to convection. Recent experimental and
oretical work have shown that convection significantly alt
the behavior of the chemical wave. Miike, Muller, and He
showed that convective rolls are associated with the che
cal waves in the Belousov-Zhabotinsky~BZ! reaction @1#.
Menzingeret al. observed convective turbulence as the B
reaction takes place in a vertical tube@2#. Chemical waves
propagating upward are different than propagating dow
ward due to convection in the iron~II !-nitric acid reaction
@3#, the chlorite-thiosulfate reaction@4#, and the iodate-
arsenous acid reaction in vertical cylinders@5#. Experiments
by Masereet al. in the iodate-arsenous acid reaction show
that a front propagating upward in a vertical cylinder can
either flat, nonaxisymmetric, or axisymmetric depending
the diameter of the tube@6#. For diameters less than 1.1 mm
the front is flat; if the diameter is between 1.1 and 2.3 m
the front is nonaxisymmetric; and for larger diameters
front is axisymmetric. Fronts propagating downward are
ways flat with the same speed. They have the same spe
the flat front propagating upward, indicating no convectio
thus the curvature of the front and speed enhancement is
to convective fluid motion. In this reaction, a single fro
propagating upward separates heavy unreacted fluid f
light reacted fluid. This density difference leads to conv
tion.

Previous theoretical work consisted of the linear stabi
analysis of the convectionless flat fronts in the ioda
arsenous reaction@7#. This calculation showed that the fla
front is unstable to nonaxisymmetric perturbations near
onset of convection, and unstable to axisymmetric pertur
tions for larger diameters@8#. However, this calculation can
not predict when the transition from a nonaxisymmetric to
axisymmetric front takes place. In order to describe this p
cess, a linear stability analysis of the convective fronts
required. Theoretical work on convective fronts in t
iodate-arsenous acid reaction consisted of numerical s
tions of the equations of motion in two dimensions. The fro
was modeled with reaction-diffusion equations@9# and with
a front evolution equation@10#. The reaction-diffusion solu-
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tions are computationally more expensive, but they show
the transition from flat, to nonaxisymmetric, and later to a
symmetric fronts as the width of the tube is increased@11#.
The solutions of the front evolution equations showed o
nonaxisymmetric fronts.

Theoretical work for flow in porous media are relevant
experiments where the reaction takes place between two
tical walls, a Hele-Shaw cell@12#. The reaction-diffusion
equation coupled to Darcy’s law showed a region of bis
bility where the front can be either axisymmetric or nona
symmetric@13#. This property was not observed for the vi
cous fluid equations described by the Navier-Stok
equations. In this work, we carry out the linear stabil
analysis of convective fronts using the front evolution equ
tion. We considered flow in porous media using Darcy’s la
and viscous flow using the Navier-Stokes equations.

II. EQUATIONS OF MOTION

Chemical waves in the iodate-arsenous reaction are
scribed with a reaction-diffusion equation coupled to nonl
ear hydrodynamics. Numerical solutions on a tw
dimensional grid showed transitions from flat,
nonaxisymmetric, and later to axisymmetric fronts@11#. In
the present work, the chemical front is described with
eikonal relation that gives the normal velocity of the reacti
front (c) as a function of the local curvature (K):

c5c01DcK1VW •n̂. ~1!

Herec0 is the flat front speed,Dc is the molecular diffusiv-
ity, VW is the fluid velocity, andn̂ is the normal unit vector to
the front. The eikonal relation was first introduced by Zyk
@14#, and later used by Keener and Tyson in the contex
the Belousov-Zhabotinsky reaction@15#. The relation was
mathematically derived from a set of reaction-diffusio
equations using singular perturbation theory@16#. This rela-
tion was verified in experiments by Foerster, Muller, a
Hess@17#. Wilder, Vasquez, and Edwards showed that t
model can be applied to chemical waves involving fluid flo
@18#.
6767 © 1997 The American Physical Society
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6768 56DESIDERIO A. VASQUEZ
The front can be described by the front heightz5H(x,t),
wherex is the horizontal coordinate, andz the vertical coor-
dinate. We consider only the two-dimensional problem in
x-z plane. The curvature can be expressed as a functio
H,

K5
]2H/]x2

@11~]H/]x!2#1/2, ~2!

as well as the normal unit vector:

n̂5
@ ẑ2~]H/]x!x̂#

@11~]H/]x!2#1/2. ~3!

Here x̂ and ẑ are the unit vectors in thex andz directions,
respectively.

For fluid in porous media or viscous fluid between tw
vertical slabs with a narrow gap, the flow can be describ
with Darcy’s law

VW 52
k

m
~¹W P1rgẑ!, ~4!

and the continuity equation

¹•VW 50. ~5!

Here VW is the fluid velocity,P is the pressure,g is the ac-
celeration of gravity in the verticalz direction,k is the co-
efficient of permeability of the medium, andm is the coeffi-
cient of viscosity. For viscous fluid in a Hele-Shaw cell, w
just have to replacek with a2/12, wherea is the slab width.
The fluid density~r! is included only where it modifies th
large gravity term. Using a step functionQ, which is zero if
the argument is negative and 1 if it is positive, we can wr
the fluid density as

r5r01DrQ~z2H !. ~6!

The continuity equation allows us to replace the fluid velo
ity with a stream function, where the components of the
locity are given by

Vx5
]c

]z
and Vz52

]c

]x
. ~7!

With this substitution, Darcy’s law becomes

¹2c52
k

m
g

]r

]x
. ~8!

The derivative of the step function in the densityr leads to a
Dirac d function, which in turn determines jump condition
for the stream function across the front. The equation for
stream function is then the Laplace equation

¹2c50, ~9!

with jump conditions across the front:

@c#H50, ~10!
e
of

d

e

-
-

e

Fdc

dzG
H

5R̃
]H

]x
, ~11!

with

R̃5
k

m
gDr. ~12!

The brackets indicate the value of any function in the un
acted side of the front, minus the value in the reacted sid
the front.

The equations of motion and the boundary conditions
be further simplified using a reference frame moving w
the speed of the flat front, and considering only small dev
tions from the flat front. In this reference frame Eqs.~9!–
~11! still govern the behavior of the stream function; how
ever, the stream function relates to the increase of spee
the fluid flow. The fluid velocity in the moving frame i
VW 052c0ẑ, so Eq.~7! just gives the additional velocity to
this field. Thus the solution for a flat convectionless front
given by H50 and VW 50, since the total fluid velocity is
equal toVW 01VW . Equations~9!–~11! indicate that the stream
function depends linearly with]H/]x. Using this fact, and
expanding the normal vectorn̂ and the curvatureK up to
second order in]H/]x, we obtain a front propagation equa
tion

]H

]t
5D

]2H

]x2 1
c0

2 S ]H

]x D 2

1Vzuz5H . ~13!

We can relate the jump conditions at the front to jum
conditions atz50 using a Taylor expansion of the form

@j#z5H5@j#z501HF]j

]zG
z50

1••• . ~14!

Here j represents any variable that needs to be matche
the front. The front heightH is considered small. In the jump
conditions @Eqs. ~10! and ~11!#, the fluid variablesc and
]c/]z are already proportional toH, therefore, the second
term in the Taylor expansion@Eq. ~12!# will be of order
o(H2). Since we just need to include linear terms onH in
the fluid velocityVz @Eq. ~11!#, we can approximate

@j#z5H5@j#z50 . ~15!

Using similar arguments based on a Taylor expansion,
can useVuz50 , in Eq. ~13! instead ofVuz5H . Therefore the
jump conditions can be taken atz50, as well as the vertica
component of the fluid velocity.

The front evolution equations in a viscous fluid was d
rived in a previous work@19#. The only difference is replac
ing Darcy’s law ~Eq. 4! with the linearized Navier-Stoke
equations in a frame comoving with the flat front. In terms
the stream function,

c0

]

]z
¹2c1n¹2¹2c50, ~16!

together with the jump conditions
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56 6769LINEAR STABILITY ANALYSIS OF CONVECTIVE . . .
@c#050, ~17!

F]c

]z G
0

50, ~18!

F]2c

]z2 G
0

50, ~19!

F]3c

]z3 G
0

5
gDr

nr0

]H

]x
. ~20!

Heren is the kinematic viscosity, and is related to the co
ficient of viscosity byn5m/r. The boundary conditions fo
Darcy’s law requires that the normal fluid velocity at th
walls vanish. For viscous fluids, we choose free slip bou
aries, which also require vanishing normal velocity at t
walls. This will allow us to compare both models under t
same boundary conditions.

III. SOLUTIONS FOR FLOW IN POROUS MEDIA

We solve the equations of motion for flow in porous m
dia introducing a Fourier expansion on the stream funct
~c! and the front height (H):

c~x,z,t !5(
n

cn~z,t !sin~nqx!, ~21!

H~x,t !5(
n

Hn~ t !cos~nqx!. ~22!

The boundaries are two vertical walls located atx50 and
x5L. The numberq is determined by the wall separatio
q5 p/L. With these substitutions Eqs.~9!–~11! are decou-
pled into equations for the Fourier coefficients:

d2cn

dz2 2~nq!2cn50, ~23!

@cn#050, ~24!

Fdcn

dz G
0

52R̃~nq!Hn . ~25!

This set of equations with the jump conditions can be sol
as functions ofHn :

cn~z!55
R̃Hn

2
e~nqz! if z,0

R̃Hn

2
e2~nqz! if z>0.

~26!

Using this result together with the relation between
vertical component of the velocity and the stream functi
we can write the front evolution equation using only t
front heightH and its Fourier coefficients:
-

-
e

-
n

d

e
,

]H

]t
5D

]2H

]x2 1
c0

2 S ]H

]x D 2

1
R̃

2 (
n

~nq!Hn cos~nqx!.

~27!

We define dimensionless units:

H5~D/c0!H8, ~28!

x5x8D/R̃, ~29!

q5q8R̃/D, ~30!

t5t8D/R̃2, ~31!

v85c0
2/R̃2 ~32!

to transform the equation into

]H8

]t8
5

]2H8

]x82 1
1

2 S ]H8

]x8 D 2

1(
n

~nq8!

2
Hn8 cos~nq8x8!.

~33!

From now on we will drop the primes. The reason for th
choice of units is clear, as we introduce the Fourier exp
sion @Eq. ~22!# to transform the partial differential equation
into a set of ordinary differential equations~ODE’s! on the
Fourier coefficientsHn . The resulting set of ODE’s does no
contain the termv0 except on the projection overH0 :

dH0

dt
5

q2

4 (
n51

n2Hn
2, ~34!

dHp

dt
5S 2p2q21

pq

2 DHp1
q2

4 (
n51

(
m51

nmHnHm

3~dp,un2mu2dp,n1m! for p>1. ~35!

This means that the behavior of the dynamical system
determined solely by the coefficientsHn with n.0, with
their behavior independent from the dimensionless flat fr
speed. They will be determined only by the dimensionle
parameterq which is related to the width of the tube. We ca
obtain valuable insight in the stability of the fronts just b
keeping a few terms in the truncations. A two term trunc
tion

dH0

dt
5q2H1

2/4, ~36!

dH1

dt
52q2H11

1

2
qH1 ~37!

is useful to analyze the stability of the flat front. The fir
equation determines the behavior ofH0 . The second equa
tion is a linear equation involving onlyH1 . To analyze the
stability of the flat front solution~H050 andH150! it is
necessary to analyze the stability of the second equation

volving only H1 . The solution is stable only ifq. 1
2 , which

is the result of a previous linear stablity analysis@20#. For
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6770 56DESIDERIO A. VASQUEZ
unstable solutions, the coefficientH1 grows exponentially,
forcing H0 to grow because of their coupling through th
first equation. In this case there is no stable curved fron
three term truncation

dH0

dt
5q2H1

2/41q2H2
2 , ~38!

dH1

dt
52q2H11q2H1H21 1

2 qH1 , ~39!

dH2

dt
524q2H22 1

4 q2H1
21qH2 ~40!

provides the nonlinear mechanism that stabilizes the con
tive front. In this system, the behavior ofH0 is determined
by the coefficientsH1 and H2 . The other equations do no
involve H0 . The flat front solution ~H05v0t with
H15H250! is also stable forq. 1

2 which is determined by
the second and third equations. A steady state solution
the last two equations can be found withH25(2q21)/2q
and H1

252(22q11)(4q21)/q2, these formulas require
that q, 1

2 for the solution to exist. Linearizing the equation

shows that the solution is stable forq. 1
4 . In summary, the

three-term truncation shows a transition from a stable

front (q. 1
2 ), to a stable convective front (1

4 ,q, 1
2 ), to an

unstable convective front (q, 1
4 ).

With 25 terms in the truncation we obtain axisymmet
fronts as well as nonaxisymmetric fronts. A direct numeri
simulation withq50.2 generates both types of fronts starti

FIG. 1. Time sequence showing the development of the con
tive front from a perturbed flat front in porous media. We show
front every 30 dimensionless time units. In this case, an axisymm
ric front develops. The spatial units are the dimensionless sp
units defined in the text. The reference frame is moving with the
front speed.
A

c-

or

t

l

with small random perturbations. The flat front evolves in
either front depending on the initial conditions. In Fig. 1, w
show the evolution of a flat front with small random pertu
bations leading to an axisymmetric front. The height of t
front is measured in a reference frame comoving with
speed of the convectionless flat front (v0). In other words, a
horizontal line atH50 represents the moving flat front. Th
curved front moves with a speed faster than the flat fr
speed, increasing steadily its average height. In Fig. 2
show the results obtained with different random initial pe
turbations. In this case a nonaxisymmetric front evolves fr
the initial front. We observe that the speed of the nonaxisy
metric front is higher by comparing the positions of the a
symmetric front with the nonaxisymmetric front at exact
the same times after initiation. Both fronts are stable for
same parameterq, which indicates that bistability exists.

Convection causes the different shapes of the front. F
nonaxisymmetric front, one convective roll is present
shown in Fig. 3. In this case, fluid rises close to one verti
wall, falling close to the opposite wall, causing the chara
teristic nonaxisymmetric shape. In the case of an axisymm
ric front ~Fig. 4!, we find that the fluid rises in the middle an
falls near the walls. The front is completely symmetric for
reflection around a vertical line through the middle of t
tube. This is shown in the steady state solution of Eqs.~35!
where only the Fourier coefficients for even symmetry a
present, namely, the coefficientsHn , with n even. For the
nonaxisymmetric front, both even and odd terms are pres
Consequently, the front is not antisymmetric.

We carry out the linear stability analysis of the convecti
front to understand the bistability observed in the numeri
solutions. First, we obtain the numerical solution of ea

c-

t-
ial
t

FIG. 2. Time sequence showing the development of the conv
tive front from a perturbed flat front in porous media. We show t
front every 30 dimensionless time units. In this case, a nonaxis
metric front develops. The spatial units are the dimensionless
tial units defined in the text. The reference frame is moving with
flat front speed.



a
t

he
ch

he
s.
e
ax

s

e
r
e
c
a

-
h
s
ve
th
a

he
t

re
s
d
he
t i
r
iz

a

he

ns
ed

us
a

le
th

e-
nd
de-
ont

the
ric

a
ative
de-

56 6771LINEAR STABILITY ANALYSIS OF CONVECTIVE . . .
front using Newton’s method for the system of nonline
equations@21#. These steady state solutions correspond
setting the time derivatives to zero in Eqs.~35!. We use an
axisymmetric solution to start Newton’s method, with t
value ofq slightly changed. In this way we obtain a bran
of axisymmetric solutions asq varies~Fig. 5!. We tested the
result comparing the solution of Newton’s method with t
solution of the direct numerical simulation of the ODE’
The results are the same. We proceed in the same mann
generate the nonaxisymmetric branch. The calculated
symmetric branch runs fromq50.12 to 0.23. No solution
was found for values aboveq50.23. While solutions for
values withq,0.1 are possible in both branches, we cho
not to study them beyond this point. Small values ofq lead
to fronts with very high curvature. The front evolution mod
is an approximation of the eikonal relation for a small cu
vature. In this regime, the full eikonal relation may b
needed, as well as the inclusion of more terms in the trun
tion for accurate solutions. The nonaxisymmetric branch w
calculated fromq50.5 ~where the transition from flat to con
vective front takes place! to q50.12. The speeds of bot
types of fronts always increase asq decreases. This mean
that as the tube is widened the front moves faster. Howe
the speed of the axisymmetric front can be lower than
speed of the nonaxisymmetric front for a small range of v
ues ofq in the regime where both types are stable.

The linear stability analysis is carried out linearizing t
equations around these solutions. We use the routines in
EISPACK diagonalization package to calculate the cor
sponding eigenvalues@22#. The real part of the eigenvalue
determines the stability of the front, consequently we nee
study only the eigenvalue with a maximum real part. If t
maximum real part of the eigenvalue is positive the fron
unstable, if it is negative it implies that all the real parts a
negative, thus the front is stable. The results are summar

FIG. 3. Velocity field near a nonaxisymmetric front in poro
media. The front curvature is caused by fluid rising near one w
and falling near the opposing wall. The units are the dimension
units described in the text. The reference frame is moving with
flat front speed.
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in Fig. 6 where we plot the real part of the eigenvalue with
maximum real part, as a function of the parameterq. For
0.17,q,0.5 the nonaxisymmetric solution is stable as t
real part of the eigenvalue is positive. For 0.23,q,0.25
there is an unstable axisymmetric solution, while forq,0.25
we found a stable axisymmetric solution.

IV. SOLUTIONS FOR VISCOUS FLOW

The equations of motion coupled to the jump conditio
for viscous flow lead to the front evolution equation coupl

ll
ss
e

FIG. 4. Velocity field near an axisymmetric front in porous m
dia. The front curvature is caused by fluid rising in the middle a
falling near the walls. The units are the dimensionless units
scribed in the text. The reference frame is moving with the flat fr
speed.

FIG. 5. The front speed as a function of the numberq5p/L in
a porous media. The solid line corresponds to stable fronts, and
dotted line to unstable fronts. The bold line is for axisymmet
fronts, and the thin line is for nonaxisymmetric fronts. There is
change of stabilities in each branch. The speed is measured rel
to the flat front speed. The units are the dimensionless units
scribed in the text.
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6772 56DESIDERIO A. VASQUEZ
to the front Fourier coefficientsHn :

]H

]t
5D

]2H

]x2 1
c0

2 S ]H

]x D 2

1
Rf

4 (
n

Hn

nq
cos~nqx!,

~41!

with

Rf5
gDr

nr0
. ~42!

The derivation of this equation is similar to the derivation
Eqs.~33!, and can be found in the literature@19#. This equa-
tion is an approximation valid for the experimental para
eters of the iodate-arsenous acid reaction, where the spe
the front can be neglected for values ofq near the onset o
convection@7#. We introduce the dimensionless units for vi
cous fluid:

H5~D/c0!H8, ~43!

x5x8S D

Rf
D 1/3

, ~44!

q5q8S Rf

D D 1/3

, ~45!

t5t8
c0

D2/3Rf
1/3, ~46!

v085
c0

2

D4/3Rf
2/3. ~47!

With these units, the resulting set of ODE’s on the Four
coefficients is

FIG. 6. Maximum real part for the eigenvalues of the lineariz
matrix around the convective front solutions in porous media. T
thin line corresponds to the nonaxisymmetric solution. It is nega
for 0.17,q,0.5, indicating a stable front. The bold line corr
sponds to the axisymmetric solution. It is negative forq,0.23.
f

-
of

r

dHp

dt
5S 2p2q21

1

4pqDHp1
q2

4 (
n51

(
m51

nmHnHm

3~dp,un2mu2dp,n1m! for p>1, ~48!

with the equation forH0 identical to its corresponding equa
tion for a porous media@Eq. ~31!#.

We look for the steady state solutions using the te
niques previously described. The results are shown in Fig
where we display the speed of the axisymmetric and non
symmetric branches as functions of the parameterq. The
calculations used a 125-term truncation required to ass
convergence. We find two types of steady state solutio
The nonaxisymmetric solutions are possible withq,0.63,
the axisymmetric solutions are possible withq,0.32. The
nonaxisymmetric state includes terms of even and odd pa
in the Fourier expansion, while the axisymmetric state c
tains only even terms, as was the case for flow in por
media. The calculation of the eigenvalues~Fig. 8! show that
the nonaxisymmetric steady state is always stable, while
axisymmetric state is always unstable. There is no region
bistability as it was the case of flow in porous media.

V. DISCUSSION AND CONCLUSIONS

Newton’s method provided the convective steady state
lutions of the front evolution equations. A linear stabili
analysis determined the stability of these solutions. The
culation of the maximum real part of the eigenvalues in
cated a transition from flat fronts to nonaxisymmetric fron
as well as the parameters where the axisymmetric fronts
come stable for fronts propagating in porous media or He
Shaw cells. Moreover, a region of bistability between a
symmetric fronts and nonaxisymmetric fronts was observ
This bistability was also observed in fronts modeled with
one-variable reaction-diffusion equation coupled to Darc
law. Carey, Morris, and Kolodner carried out experiments
Hele-Shaw cells, where Darcy’s law can be applied@12#.
However, a direct comparison with our theory is not y

e
e

FIG. 7. The front speed as a function of the numberq5p/L in
a viscous fluid. The thin line corresponds to an unstable axis
metric front, while the bold line corresponds to a stable nonaxisy
metric front. The speed is measured relative to the flat front sp
The units are the dimensionless units described in the text.
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56 6773LINEAR STABILITY ANALYSIS OF CONVECTIVE . . .
possible, since the experiments were carried out away f
the onset of convection. Using the linear stability analy
and the experimental values of the parameters, the ons
convection for a wall separation of 0.05 cm has a critical s
width of 0.06 cm. The bistable region should lie close
twice that length~0.12 cm!. The actual experiments hav
slab widths of 3.2 cm. This means that the experiments
Hele-Shaw cells were performed not only above onset,
also well above the region of bistability. New experimen
will have to be designed to test the onset of convection
the predicted bistability. However, since the critical wa

FIG. 8. Maximum real part for the eigenvalues of the lineariz
matrix around the convective front solutions in a viscous fluid. T
thin line corresponds to the nonaxisymmetric solutions. The b
line corresponds to the axisymmetric solutions. The axisymme
solutions always have a positive real part, consequently they
unstable.
d

oc

J.
, J

K

. A

id

s,

D

ys
m
s
of

b

in
ut

d

number (qc) for the onset of convection varies by a factor
about 2 between the front evolution model and the reacti
diffusion model @13#, the front evolution model may only
have a qualitative comparison with the experiments. W
point out that both models have the same qualitative featu
namely, a nonaxisymmetric front near the onset of conv
tion, and a region of bistability away from onset.

The linear stability analysis of the convective fronts
viscous fluids establish that there are stable nonaxisymm
fronts near the onset of convection. However, it also est
lishes that there are no stable axisymmetric fronts. This
contrary to what is observed in the experiments, where n
axisymmetric fronts are observed near the onset of conv
tion, and axisymmetric fronts are observed away from
onset of convection. This result helps to explain a previo
numerical simulation of the front evolution equation usi
the correct no-flow boundary conditions in a tw
dimensional slab@10#. This study found that the calculate
front speed was comparable to the experimental front sp
near the onset of convection. However, it did not find a
symmetric fronts. Axisymmetric fronts appeared in dire
numerical simulations using the reaction-diffusion equat
to describe the iodate-arsenous acid reaction front@11#. This
indicates that the front evolution model is not reliable b
yond the onset of convection. Nevertheless, both mod
roughly agree for the critical wavelength for the onset
convection. The qualitative and quantitative features of
front evolution equation with viscous fluids are valid on
near the onset of convection.
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